
Heuristic Search for Identical Payoff Bayesian Games

Frans A. Oliehoek
Informatics Institute,

University of Amsterdam
Amsterdam, The Netherlands

F.A.Oliehoek@uva.nl

Matthijs T.J. Spaan
Inst. for Systems and Robotics

Instituto Superior Técnico
Lisbon, Portugal

mtjspaan@isr.ist.utl.pt
Jilles S. Dibangoye

Laval University, Canada
University of Caen

Basse-Normandie, France
gdibango@info.unicaen.fr

Christopher Amato
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003 USA
camato@cs.umass.edu

ABSTRACT
Bayesian games can be used to model single-shot decision
problems in which agents only possess incomplete informa-
tion about other agents, and hence are important for mul-
tiagent coordination under uncertainty. Moreover they can
be used to represent different stages of sequential multia-
gent decision problems, such as POSGs and DEC-POMDPs,
and appear as an operation in many methods for multiagent
planning under uncertainty. In this paper we are interested
in coordinating teams of cooperative agents. While many
such problems can be formulated as Bayesian games with
identical payoffs, little work has been done to improve solu-
tion methods. To help address this situation, we provide a
branch and bound algorithm that optimally solves identical
payoff Bayesian games. Our results show a marked improve-
ment over previous methods, obtaining speedups of up to 3
orders of magnitude for synthetic random games, and reach-
ing 10 orders of magnitude speedups for games in a DEC-
POMDP context. This not only allows Bayesian games to
be solved more efficiently, but can also improve multiagent
planning techniques such as top-down and bottom-up algo-
rithms for decentralized POMDPs.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory, Performance, Experimentation

Keywords
Decision-Making under Uncertainty, Cooperative Multiagent
Systems, Bayesian Games, Cooperative Game Theory

1. INTRODUCTION
Bayesian games (BGs) offer a rich model for analyzing

decision-making with incomplete (partial) information [7].
In a Bayesian game, each player possesses a type which is

Cite as: ��������	
���	�
�� ������	�� ����

 �������� ������
���������
����� ��������� ��� ������ Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2010)� �� ��� ����� !������� "���#���	�� "�	� ���
�� $���%&� '���
()*(+� ,)()� .������� /������ ��%3
/�������� c© ,)()� ������������� 5���������
�� ���������� ������ ���
'���������
������ $666%�
�����%���&% ��� ������ ����� ��%

not revealed to the other players. Decisions must be made
by considering the possible types of the other players as well
as the possible actions that may be taken. This results in
a model that is able to represent many areas of multiagent
decision-making under uncertainty.

In addition to the many cases that can modeled as compet-
itive games with incomplete information like coalition for-
mation [2], Bayesian games are also common in cooperative
scenarios. For instance, identical payoff Bayesian games are
a central component of the decision making in decentral-
ized POMDPs (DEC-POMDPs) [1, 9, 6]. In DEC-POMDPs
each agent has local information about the environment in
the form of observation histories that are not shared with
the other agents. Identical payoffs are used because agents
are cooperative and thus seek to maximize a joint objective.
Because DEC-POMDPs are sequential problems, Bayesian
games can be used at each step to determine the actions
that maximize the value for the different observation histo-
ries that may occur [6]. BGs have also been employed in
general-payoff sequential settings—modeled by partially ob-
servable stochastic games (POSGs) [5]—for the control of a
team of robots [4].

While Bayesian games can model many common multia-
gent scenarios, to the best of our knowledge only a single op-
timal algorithm is available, namely brute-force evaluation.
In this paper, we present BaGaBaB, a branch and bound
algorithm for solving identical payoff BGs. This algorithm
is able to exploit the structure of the game to solve it more
efficiently. This is accomplished by approaches such as using
heuristics based on centralized values, avoiding expansion of
invalid nodes, ordering the search-tree nodes based on action
contribution and memory efficient representations.

To demonstrate the performance of our approach, we test
the branch and bound algorithm on a set of randomly gener-
ated games as well as those encountered in the use of a DEC-
POMDP solver PBIP [3]. We show marked improvement
over brute-force evaluation. This is promising for solving
large BGs as well as scaling up DEC-POMDP algorithms.

2. BAYESIAN GAMES
A strategic game of imperfect information or Bayesian

game [7] is an augmented strategic game in which the play-
ers hold some private information. This private information
defines the type of the agent. That is, a particular type

1115

1115-1122

θi ∈ Θi of an agent i corresponds to that agent knowing
some particular information. The payoff that the agents re-
ceive depends not only on their actions, but also on their
private information. Formally, a BG with identical payoffs
(IP) is defined as follows:

Definition 1. A Bayesian game with identical payoffs is a
tuple 〈D,A,Θ, Pr(Θ),u〉, where

• D is the set of n agents,

• A = {a1, . . . ,a|A|} is the set of joint actions a =
〈a1, . . . ,an〉, with ai ∈ Ai an individual action of agent i,

• Θ = ×iΘi is the set of joint types θ = 〈θ1, . . . ,θn〉,
with θi ∈ Θi an individual type of agent i. θk denotes
the k-th joint type and θk

i denotes the k-th individual
type of agent i,

• Pr(Θ) is the probability function specified over the set
of joint types, and

• u : Θ ×A → R is the payoff function for the team.

In a BG, the agents can condition their action on their
type. This means that the agents use policies that map
types to actions. We denote a joint policy β = 〈β1,...,βn〉,
where βi is the individual policy of agent i. We consider
deterministic (pure) individual policies that are mappings
from types to actions βi : Θi → Ai.

The value of a joint policy is its expected payoff:

V (β) =
X
θ∈Θ

Pr(θ)u(θ,β(θ)), (1)

where β(θ) = 〈β1(θ1),...,βn(θn)〉 is the joint action specified
by β for joint type θ. For a BG with identical payoffs, a
solution is guaranteed to exist in deterministic BG-policies
and this solution is given by β∗ = arg maxβ V (β). This so-
lution constitutes a Pareto optimal Bayes-Nash equilibrium.
The standard approach of solving general (non-IP) BGs is to
convert them to a normal-form game and then use standard
solution methods to solve it. In the IP case, this approach
reduces to brute force search (BFS): every deterministic β

is evaluated using (1) and the optimal one is maintained.
There also are approximate solution methods for BGs, such
as alternating maximization [4], but these only guarantee to
find an (arbitrarily worse) local optimum solution.

Note that the value of a joint BG-policy is defined as the
sum of payoffs generated by joint types. We refer to this as
the contribution for this joint type, defined as

Cθ(a) ≡ Pr(θ)u(θ,a).

Complete Information Assumption
In a BG, each agent only knows its own individual type. In
this paper, however, we also consider a heuristic that as-
sumes complete information and relaxes this requirement.
If we assume that both agents can observe the joint type,
then they could employ a different kind of policy: one that
maps from joint types to actions. That is, we define com-
plete information (CI) policies as follows. A joint CI policy
is a tuple Γ = 〈Γ1, . . . ,Γn〉 where an individual CI policy Γi

maps joint types to individual actions Γi : Θ → Ai. The
joint action specified for θ is

Γ(θ) = 〈Γ1(θ), . . . ,Γn(θ)〉 = aΓ

θ .

θ1
2 θ2

2
a2 ā2 a2 ā2

θ1
1

a1 −0.3 +0.6 −0.6 +4.0
ā1 −0.6 +2.0 −1.3 +3.6

θ2
1

a1 +3.1 +4.4 −1.9 +1.0
ā1 +1.1 −2.9 +2.0 −0.4

(a) Illustration of the optimal BG policy β∗.
V (β∗) = (2.0 + 3.6 + 4.4 + 1.0)/4 = 11.0

4
= 2.75.

θ1
2 θ2

2
a2 ā2 a2 ā2

θ1
1

a1 −0.3 +0.6 −0.6 +4.0
ā1 −0.6 +2.0 −1.3 +3.6

θ2
1

a1 +3.1 +4.4 −1.9 +1.0
ā1 +1.1 −2.9 +2.0 −0.4

(b) The optimal complete information policy Γ∗.
V (Γ∗) = (2.0 + 4.0 + 4.4 + 2.0)/4 = 12.4

4
= 3.1.

Figure 1: Illustration of the difference between the BG pol-
icy β and the CI policy Γ. This example assumes a uniform
distribution over joint types.

The value of a joint CI policy Γ can also be written as a
summation of values for each joint type

V (Γ) =
X
θ∈Θ

Pr(θ)u(θ,Γ(θ)) =
X
θ∈Θ

Cθ(aΓ

θ). (2)

The optimal joint CI policy Γ∗ is much easier to find than
β∗, since it simply specifies to take the joint action that
maximizes the contribution for each joint type.

∀θ Γ∗(θ) = arg max
a

Cθ(a). (3)

Figure 1 illustrates the difference between the optimal (reg-
ular) joint BG policy β∗ and the CI policy Γ∗.

3. BRANCH AND BOUND SEARCH
Here we introduce Bayesian game branch and bound pol-

icy search, dubbed BaGaBaB.

3.1 Joint Policies as Joint Action Vectors
A CI joint policy Γ is equivalent to a vector of joint ac-

tions, one for each joint type. For instance, in the example
shown in Figure 1 there are four joint types

Θ = {
˙
θ1
1,θ

1
2

¸
,
˙
θ1
1 ,θ2

2

¸
,
˙
θ2
1 ,θ1

2

¸
,
˙
θ2
1 ,θ2

2

¸
}.

If we interpret this set as an ordered list, that we can rep-
resent Γ∗ simply as

Γ∗ = 〈〈ā1,ā2〉 , 〈a1,ā2〉 , 〈a1,ā2〉 , 〈ā1,a2〉〉 . (4)

Similarly, it is also possible to specify any regular joint BG-
policy β as such a vector. For instance, β∗ from Figure 1a
can be represented as

β
∗ = 〈〈ā1,ā2〉 , 〈ā1,ā2〉 , 〈a1,ā2〉 , 〈a1,ā2〉〉 . (5)

We will refer to such vectors representing policies as joint-
action vectors (JAVs).

However, there is one big difference between regular and
CI joint policies: every JAV of size |Θ| corresponds to some
joint CI policy Γ. However not every such JAV corresponds
to a joint BG policy β. The reason for this difference is as
follows: because the domains of both Γ and Γi are the same
(namely the set of joint types Θ), it is always possible to
decompose any Γ as specified by a JAV into valid individual
policies Γi. In contrast, when specifying a β by a vector,

1116

it may not be possible to decompose it into individual βi,
which means that β is not valid.

3.2 Partial Vectors and Heuristic Value
Given the representation of policies using vectors, we de-

fine Bayesian game branch and bound (BaGaBaB), a heuris-
tic search algorithm. The basic idea is to create a search
tree in which the nodes are partially specified vectors (i.e.,
joint policies). We can compute an upper bound on the
value achievable for any such partially specified vector by
computing the maximum value of the CI joint policy that
is consistent with it. Since this value is a guaranteed up-
per bound to the maximum value achievable by a consistent
joint BG policy, it is an admissible heuristic.

Each node N in the search tree represents a partially spec-
ified JAV and thus a partially specified joint BG-policy. For
instance a completely unspecified vector 〈·, . . . ,·〉 will cor-
respond to the root node. While an internal node N at
depth k (root being at depth 0) specifies joint actions for
the first k joint types N = 〈aθ1 , . . . ,aθk , · , . . . ,·〉. The value
of a node V (N) is the value of the best joint BG-policy that
is consistent with it. Unfortunately, this value is not known
in advance, so we need to resort to heuristic values to guide
our search.

In order to compute a heuristic value for a node N , we
compute the true contribution of the (joint actions for the)
k specified joint types and add a heuristic estimate of the
maximum contribution for the other joint types. For this
heuristic estimate, we use the contribution that the non-
specified joint types would bring under complete informa-
tion. That is, for a some node at depth k we construct a
joint CI policy

ΓN =
D
aθ1 , . . . ,aθk ,aΓ

∗

θk+1 , . . . ,aΓ
∗

θ|Θ|

E
, (6)

that selects the maximizing joint action for the unspecified
joint types using (3). The value of ΓN , given by (2), then
serves as a heuristic for N

f(N) ≡ V (ΓN) = g(N) + h(N) (7)

with

g(N) = Cθ1(aθ1) + · · · + Cθk (aθk) (8)

the value actually achieved by the actions specified by N ,
and the heuristic for the remainder:

h(N) = Cθk+1(a
Γ
∗

θk+1) + · · · + Cθ|Θ|(a
Γ
∗

θ|Θ|). (9)

Let us continue with the example of Figure 1. We assumed
an ordering of joint types:

θ
1 =

˙
θ1
1 ,θ1

2

¸
, θ2 =

˙
θ1
1 ,θ2

2

¸
, θ3 =

˙
θ2
1 ,θ1

2

¸
, θ4 =

˙
θ2
1,θ

2
2

¸
(10)

which allowed us to write a joint BG-policy as a vector of
joint actions. Let us define the joint actions in this example
as follows: a1 = 〈a1,a2〉 ,a2 = 〈a1,ā2〉 , a3 = 〈ā1,a2〉 ,a4 =
〈ā1,ā2〉 . Now we can consider a node N in the search tree
that represents a partially specified joint BG policy N =˙
a3, · , · ,·

¸
that maps θ1 → a3. From this node we con-

struct ΓN =
˙
a3,a2,a2,a3

¸
because (3) specifies that a2 =

Γ∗(θ2) = arg max
a

Cθ2(a) is maximizing for θ2 under com-
plete information. Similarly, a2,a3 are maximizing for θ3,θ4.
The heuristic value of N is given by

f(N) = (−0.6 + 4.0 + 4.4 + 2.0)/4 =
9.8

4
= 2.45.

Because h(N) is a guaranteed over-estimation as we will
show next, search using (7) as its heuristic value is guaran-
teed to find an optimal solution.

Lemma 1. The complete information (CI) heuristic yields
a guaranteed over-estimation. That is, (7) yields an upper-
bound on the achievable value: V (N) ≤ V (ΓN).

Proof. In order to show that the heuristic value f(N) is
an upper bound, we introduce a mapping also called CI that
specifies what joint actions are consistent with a particular
node N = 〈aθ1 , . . . ,aθk , · ,·〉. Namely,

CI(N,θm) =

j
{aθm} if 1 ≤ m ≤ k
A otherwise.

(11)

Therefore, if N specifies a joint action for θm, then CI(N,θm)
is the singleton set containing this action, otherwise it spec-
ifies the entire set of joint actions. Thereafter, f(N) can be
rewritten as follows:

f(N) = V (ΓN) =
X
θ∈Θ

max
a∈CI(N,θ)

Cθ(a) (12)

Then, for any vector N ′ that is obtained from N by adding
constraints on CI(N,θm), we are able to prove that f(N) ≥
f(N ′). In other words, value f(N) is an upper bound for
all N ′ that might result from N by further constraining it.
This is true since constraining the set CI(N,θm) will sim-
ply result in reducing the set of possible actions under max
operator maxa∈CI(N,θ) in Equation (12), and the value can
therefore never increase. If N is completely specified, then
each set CI(N,θm) contains only a single action, and the
upper bound f(N) coincides with the true value of N .

3.3 Search Tree
The BaGaBaB search we propose is a form of best-first

search. This can be seen in Figure 2, our illustration of the
search tree for the example in Figure 1. It shows the partial
JAVs specified by each node, their heuristic value f and the
induced joint policy. To make it easier to relate the heuristic
values to the payoffs shown in Figure 1, they have not been
weighted by the (uniform) probability of their joint types.
That is, the true heuristic value of the root node is given by
12.4
4

= 3.1 (see also the caption of Figure 1b).
Search starts with an open list that has as its sole element

the root node that corresponds to the empty JAV Nroot =
〈·,·,·,·〉. Its heuristic value is given by the value of the best CI
joint BG-policy V (Γ∗), since ΓNroot = Γ∗. This node is ex-
panded by creating all child nodes {N = 〈a, · , · ,·〉|a ∈ A} ,
putting them in the open list and computing their heuris-
tic value f(N) through (6) and (7). The root node is now
discarded from the open list.

At this point the node with the highest heuristic value is
selected to be expanded next. In Figure 2 this is the node
〈a4, · , · ,·〉 which has heuristic value 12.4. Expansion of this
node leads to just two valid child nodes. E.g., 〈a4,a1, · ,·〉
is invalid because that would specify both actions ā1 and
a1 for the same individual type θ1

1 . The invalid nodes are
discarded. Again, a next node is chosen to be expanded
which is 〈a4,a4, · ,·〉. This node has a heuristic value of 12.0.
Further expansions lead to 〈a4,a4,a2,·〉 (with f = 12.0) and
finally 〈a4,a4,a2,a2〉 with exact value V = 11.0. This value
is exact because at this point the JAV is fully specified. This
also means that any nodes N with heuristic value f ≤ 11.0
can be pruned. In this example, this removes all nodes from

1117

f

JAV

β1
β2

〈·, · , · ,·〉

12.4

〈·,·〉

〈·,·〉

〈a1, · , · ,·〉

10.1

〈a1,·〉

〈a2,·〉

〈a2, · , · ,·〉

11.0

〈a1,·〉

〈ā2,·〉

〈a3, · , · ,·〉

9.8

〈ā1,·〉

〈a2,·〉

〈a4, · , · ,·〉

12.4

〈ā1,·〉

〈ā2,·〉

N/A

〈a4,a1, · ,·〉

INVALID

N/A

〈a4,a2, · ,·〉

INVALID

〈a4,a3, · ,·〉

7.1

〈ā1,·〉

〈ā2,a2〉

〈a4,a4, · ,·〉

12.0

〈ā1,·〉

〈ā2,ā2〉

N/A

〈a4,a4,a1,·〉

INVALID

〈a4,a4,a2,·〉

12.0

〈ā1, a1〉

〈ā2, ā2〉

N/A

〈a4,a4,a3,·〉

INVALID

〈a4,a4,a4,·〉

4.7

〈ā1, ā1〉

〈ā2, ā2〉

N/A

〈a4,a4,a2,a1〉

INVALID

〈a4,a4,a2,a2〉

11.0

〈ā1, a1〉

〈ā2, ā2〉

N/A

〈a4,a4,a2,a3〉

INVALID

N/A

〈a4,a4,a2,a4〉

INVALID

Legend

θ1 =
˙
θ1
1,θ1

2
¸

θ2 =
˙
θ1
1,θ2

2
¸

θ3 =
˙
θ2
1,θ1

2
¸

θ4 =
˙
θ2
1,θ2

2
¸

Figure 2: BaGaBaB search tree, where dashed arrows indicate the search path taken. Each node shows its heuristic value f ,
the partially specified joint action vector JAV and the induced BG-policies β1, β2. Heuristic values should be divided by 4 to
account for the (uniform) probabilities of joint types. The shaded nodes are invalid.

the open list, which means that we have found the optimal
joint policy.

It is not necessary to expand the last node, since the joint
BG policy β is already fully specified at 〈a4,a4,a2,·〉. Ex-
pansion of the last node merely serves to evaluate the exact
value. In general, it is undesirable to try and expand multi-
ple nodes only for this purpose; when β is fully specified an
evaluation of its value should be performed immediately.

4. IMPROVING EFFICIENCY
Here we present some ways by which the efficiency of

BaGaBaB may be improved.

4.1 Avoiding Expansion of Invalid Nodes
Expansion of invalid nodes can be easily prevented. For

instance, assume we want to expand N =
˙
a4, · , · ,·

¸
which

has induced joint policy β = 〈〈ā1,·〉 , 〈ā2,·〉〉. Since we are
going to perform an assignment to θ2 =

˙
θ1
1 ,θ2

2

¸
, we can

simply look up any actions that are already specified. That
is, rather than expanding nodes for all A, we can immedi-
ately construct a smaller set Cons of joint actions that are
consistent. This set is easily constructed by using the same
notation as for partially specified policies:

Cons(N,θ2) = {β(θ2)} = {
˙
β1(θ

1
1),β2(θ

2
2)

¸
}

= {〈ā1,·〉} = {〈ā1,a2〉 , 〈ā1,ā2〉} = {a3,a4} (13)

That is, the ‘·’ specified by the induced policy β2(θ
2
2) works

as a wildcard, while β1(θ
1
1) is specified by the induced policy

and thus specifies one particular action (ā1).

4.2 Improved Heuristic
The CI heuristic is an upper bound to the true value, but

is not very tight. Here we discuss a second heuristic that
takes into account the joint actions that have been specified
already, making sure only to select consistent joint actions.

To achieve this, we propose to employ a consistent complete
information (CCI) joint policy Δ, rather than using the CI
joint policy for the unspecified joint actions.

In particular, we define ΔN for a node N using Cons(N,θ)
as defined by (13):

∀N ΔN(θ) ≡ arg max
a∈Cons(N,θ)

Cθ(a). (14)

Definition 2. The consistent complete information (CCI)
heuristic for a node N is defined as

f(N) = V (ΔN) =
X
θ∈Θ

max
a∈Cons(N,θ)

Cθ(a). (15)

As an example, again consider node N =
˙
a3, · , · ,·

¸
. When

taking into account the specified action a3 for θ1, we see
that the only consistent choices for θ2 are a3,a4. As such
the CCI joint policy specifies

a3 = ΔN (θ2) = arg max
a∈{a3,a4}

Cθ2(a),

and the full CCI joint policy for this node is given by ΔN =˙
a3,a3,a2,a3

¸
.

Lemma 2. The CCI heuristic (15) yields an upper-bound
on the achievable value: ∀N V (N) ≤ V (ΔN).

Proof. We make the same argument as before, but now
using the Cons mapping.

Corollary 1. The CCI heuristic is tighter than the CI
heuristic: ∀N V (N) ≤ V (ΔN) ≤ V (ΓN).

Proof. We only need to discuss V (ΔN) ≤ V (ΓN), as
the first inequality follows from the lemmas. For each ∀N,θ

Cons(N,θ) ⊆ CI(N,θ). Therefore we can make the same
argument with respect to the constraints as before.

1118

The CCI heuristic is tighter and thus may allow for more
pruning. However, it involves a higher computation over-
head: where the CI heuristic of a node can be computed
in constant time, computation of the CCI heuristic has cost
O(|Θ| |A|), because we need to loop over all remaining joint
types and select the maximizing consistent joint action. So
clearly there is a trade-off between the CI and CCI heuris-
tics. The worst-case cost κ of expanding a node using the
CCI heuristic into its O(|A|) children is given by

κ = O(|Θ| |A|2) = O
`
|Θ∗|

n |A∗|
2n

´
. (16)

where A∗ and Θ∗ denote the largest individual set of actions
and observations.

4.3 Ordering of Joint Types
Note that the reason that Figure 2 first expands the policy

of agent 2 into a full policy (at depth 2) lies in the ordering
of joint types. We assumed the ordering is given by (10)
which means that the first 2 joint actions both will specify
an individual action for agent 1’s first type θ1

1 . The ordering

(
˙
θ1
1 ,θ1

2

¸
,
˙
θ2
1,θ

1
2

¸
,
˙
θ1
1,θ

2
2

¸
,
˙
θ2
1,θ

2
2

¸
),

would lead to first expanding agent 1’s policy to a full one,
while

(
˙
θ1
1 ,θ1

2

¸
,
˙
θ2
1,θ

2
2

¸
,
˙
θ1
1,θ

2
2

¸
,
˙
θ2
1,θ

1
2

¸
),

will lead to simultaneous expansion into full policies (by as-
signment of just 2 joint actions). For any ordering of joint
types, it is easy to determine at what point a full β will be
specified and therefore the list of joint types can be trun-
cated at that point. Here we discuss some different ways of
selecting an ordering for the joint types.

Numeric Ordering
Any tuple of types can be interpreted as a number. For in-
stance when both agents have k individual types

˙
θ5
1,θ

3
2

¸
can

be interpreted as ‘53’ in base k. (Generalization to different
numbers of types per agent is trivial.) Now we can simply
order the joint types using the numerical value to which they
correspond. This is the ordering expressed by (10) that is
used in Figure 2.

Basis Joint Types
The shortest possible list can be constructed by selecting an
ordering of joint types such that the first joint types specify
different components for each agent. For instance, we could
specify

˘˙
θ1
1 ,θ1

2

¸
,
˙
θ2
1 ,θ2

2

¸¯
as the basis joint types. Assign-

ment of a joint action to both these basis joint types can be
done without considering any conflicts and results in a fully
specified joint policy.

This highlights one feature of this ordering: it creates
the shallowest possible search tree. However, it also creates
the search tree with the highest possible branching factor
(exactly because all joint actions are valid). Exactly how
these two features trade off is hard to predict.

Simple Heuristic Orderings
Another option is to find some other heuristic ordering of
the joint types. That is, we compute some value H(θ) for
each joint type θ and then order them using this value. We

propose a few such heuristics:

probability: H(θ) = Pr(θ)

maximum contribution: H(θ) = max
a

Cθ(a)

minimum contribution: H(θ) = min
a

Cθ(a)

max. contr. difference: H(θ) = max
a

Cθ(a) − min
a

Cθ(a)

The motivation for these heuristics is quite straightforward.
For instance, by sorting joint types in descending order ac-
cording to their probability will put joint types with large
probability (that have a high contribution) early in the search
tree. The ‘contribution’ heuristics explicitly take into ac-
count the payoffs of particular joint actions. That is, sort-
ing by maximum contribution puts decisions about potential
high utility joint actions early in the tree, while (ascending)
sorting by minimum contribution tries to avoid high penal-
ties early in the search. The maximum contribution differ-
ence heuristic tries to put decisions that potentially have the
most impact early in the tree. The heuristic orderings (as
well as numerical orderings) may specify certain joint types
that do not result in the specification of any new action,
which would result in expanding a useless node. Therefore,
after we find a heuristic ordering, we check and remove any
useless joint types.

4.4 Reducing Space Complexity
Although the tree in Figure 2 shows the implied joint pol-

icy at each node, there is no reason to actually store this
information. Rather, the implied policy can be efficiently
reconstructed from the JAV when a node is selected. More-
over the JAVs in the tree can be efficiently stored using a
pointer mechanism. Therefore, there is no need to store˙
a4,a4,a2,·

¸
, and

˙
ptrToParent,a2

¸
can be stored instead.

If space becomes a problem despite this compact represen-
tation of nodes, other approaches could be used. These in-
clude other memory-bounded seach strategies (for instance,
recursive depth-first search), or applying weights to discount
the heuristic [11]. We leave consideration of these alterations
to future work.

5. BGS FOR SEQUENTIAL DECISIONS
As mentioned above, Bayesian Games and DEC-POMDPs

are related. First, we give a summary of the DEC-POMDP
model. Due to lack of space this is kept very concise, for fur-
ther reading we refer to [9, 6]. Next, we show how BGs ap-
pear in the two main approaches to solving DEC-POMDPs,
and thus how improvements in BG solution methods may
transfer to DEC-POMDPs.

5.1 DEC-POMDPs
A DEC-POMDP is a model for sequential decision making

for a team of n cooperative agents in a stochastic, partially
observable environment. At any time this environment is
in some state s ∈ S out of a set of possible states. At each
time step, or stage t, the environment is at some state st and
the agents take a joint action a. As a result, the agents ac-
cumulate reward R(st,a), the state changes (stochastically)
to some next state st+1 and the agents receive a joint ob-
servation o, from which each agent i observes only its own
component oi. The goal in a DEC-POMDP is to find an op-
timal joint policy π = 〈π1, . . . ,πn〉, where πi = (δ1

i , . . . ,δh−1
i)

1119

specifies a decision rule δt
i for all stages t, that map pos-

sible histories of observations �o t
i = (o1

i , . . . ,o
t
i) to actions:

πi(�o
t
i) = δt

i(�o
t
i) = ai.

5.2 Forward Perspective
A DEC-POMDP can be modeled by a sequence of iden-

tical payoff BGs, one for each stage t. In this BG Bt, the
set of agents and their actions are the same as in the DEC-
POMDP [6]. At a particular stage t, the private informa-
tion an agent i has is its observation history (OH) �o t

i . As
such, the types of each agent i are defined by the possible
OHs it can have: θi ≡�o t

i . Since a BG-policy maps types to
actions, a BG-policy in Bt maps OHs to actions and there-
fore corresponds to a decision rule of the DEC-POMDP:
βi(θi)≡ δt

i(�o
t
i). Similarly, joint BG-policies β correspond to

joint decision rules δt.
The probabilities of joint types Pr(θ) in Bt correspond

to the probabilities of joint OHs. These probabilities are
available if we assume that (δ0, . . . ,δt−1), the joint policy
up to stage t, is available. This is the case if we pass ‘for-
ward’ through time: we solve BGs for stages 0,1, . . . ,h − 1
in subsequent order. Finally, to wrap up the description of
Bt, the payoff function u should be defined. In principle it
is possible to compute an optimal Q-value function for the
DEC-POMDP and use this as the payoff function, but more
often heuristic payoffs function are used [6]. If this heuristic
is admissible (i.e., a guaranteed over-estimate) an A*-like
search over partially specified policies can be employed to
find optimal solutions.

5.3 Backward Perspective
The backward perspective of DEC-POMDPs is given by

the dynamic programming (DP) algorithm [5] and its exten-
sions. In this perspective, a policy πi is seen as a tree with
nodes that specify actions ai and edges labeled with observa-
tions oi, such that each node corresponds to an observation
history (the path from root to the node).

Rather than constructing such policies at once, DP seeks
to construct them incrementally. DP starts with a set Qτ=1

i

of τ = 1 ‘time-steps-to-go’ sub-tree policies for each agent i
(such a sub-tree policy qτ=1

i ∈ Qτ=1
i corresponds to an ac-

tion that may be selected for the last stage). Now DP pro-
ceeds to, for all agents i, construct sets Qτ=k+1

i from Qτ=k
i ,

pruning any qτ=k+1
i that are dominated over Δ(S×Qτ=k+1

�=i),
the simplex over states and policies of other agents. Since
the number of sub-tree policies that are non-dominated tends
to be very large, point-based DP (PBDP) methods [10, 8, 3]
have been introduced. In these methods, BGs appear when
backing up policy trees.

PBDP methods work by sampling a set of belief points b

(which are distributions over states). For each sampled bτ=k

the maximizing k-steps-to-go joint subtree policy qτ=k =˙
qτ=k
1 , . . . ,qτ=k

n

¸
is computed and the components are put

in the sets Qτ=k
i of useful sub-tree policies. Computation of

qτ=k is done by finding the best ‘completion’ Cba for each
joint action a. And such a completion Cba = 〈Cba,1, . . . ,Cba,n〉
specifies a mapping for all agents from individual observa-
tions to individual (k − 1)-steps-to-go subtrees.

Cba,i : Oi → Qτ=k−1
i

denotes the completion function for agent i for belief point bτ=k

and joint action a.
Finding the best completion C∗

ba corresponds to solving

a BG. In particular we have the following correspondences.
A type corresponds to an observation in the DEC-POMDP:
θi ≡ oi and a BG-action corresponds to selecting a subtree
ai ≡ qτ=k−1

i . Consequently completions correspond to BG-
policies:

ai = βi(θi)≡Cba,i(oi) = qτ=k−1
i .

In fact, point-based incremental pruning (PBIP) [3] uses
branch and bound to find the best Cba. It proceeds by
expanding non-specified basis joint types following a depth-
first fashion using a CI heuristic only for pruning, and speci-
fies a joint action for each joint type in the best-first fashion.
BaGaBaB can be seen as a generalization to BGs, which
also makes explicit the ordering of joint types and considers
different orderings. Moreover, BaGaBaB is based on best-
first (A∗) search and it provides tighter upper bound though
the CCI heuristic resulting in a more aggressive pruning
strategy.

6. EXPERIMENTS
We performed an empirical evaluation of BaGaBaB to

test its performance in a number of scenarios. We com-
pared Brute Force Search (BFS) with BaGaBaB using the
Numeric Ordering, the Basis Joint Types, as well as the
heuristic orderings. We noticed that the heuristic orderings
give similar results, hence we only report on one of them, the
Maximum Contribution Difference. Unless noted otherwise,
we employ the proposed Consistent Complete Information
heuristic.

Experiments were run on a dual-core processor running at
2.13GHz, with 2Gb of RAM and a Linux operating system.
Processes were limited to 1Gb of memory usage, and BFS
was given a deadline. If the solution was not feasible within
the deadline, we report approximate timing results. Due to
the straightforward nature of the BFS algorithm (looping
over all possible joint policies), timing results can be easily
and reliably be extrapolated based on the number of already
evaluated joint policies. As all methods used are optimal,
we only report on computation time.

6.1 Random Bayesian Games
First, we tested our proposed method on randomly gen-

erated BGs of different sizes. These BGs were generated by
drawing the utilities u(θ,a) from a uniform distribution over
[−10, + 10]. The probabilities Pr(θ) are drawn from [0,1]
and then normalized. This results in a relatively uniform
distribution over joint types and the expected values of dif-
ferent joint policies typically lie closely together. Because of
this limited amount of structure in the random BGs, we ex-
pect them to be hard to solve for heuristic search methods.
Table 1 shows some statistics for several of the randomly
generated BGs considered.

The reported results of the methods are averaged over the
same 100 randomly generated BGs, and BFS had a deadline
of 36s per BG. Figure 3 shows the results we obtained for
these random BGs. Figure 3a shows results for a varying
number of actions with n = 2, |Θi| = 3 (like those in Ta-
ble 1a). It shows that BaGaBaB significantly outperforms
BFS for all problems with |Ai| > 5, the difference being up
to three orders of magnitude. The figure also shows that
BaGaBaB scales quite well with the number of actions.

Figure 3b shows the results for varying number of types
(with fixed parameters as in Table 1b). Again, BaGaBaB

1120

|Ai| 2 4 6 8

|β| 6.4e01 4.1e03 4.7e04 2.6e05
|Θ| 9 9 9 9

κ 1.4e02 2.3e03 1.2e04 3.7e04

(a) Varying |Ai|. n = 2, |Θi| = 3.

|Θi| 2 4 6 8

|β| 8.1e01 6.6e03 5.3e05 4.3e07
|Θ| 4 16 36 64

κ 3.2e02 1.3e03 2.9e03 5.2e03

(b) Varying |Θi|. n = 2, |Ai| = 3.

n 2 4 6 8

|β| 7.3e02 5.3e05 3.9e08 2.8e11
|Θ| 9 81 730 6600

κ 7.3e02 5.3e05 3.9e08 2.8e11

(c) Varying n. |Ai| = 3, |Θi| = 3.

Table 1: Some statistics for different BG sizes. Shown are the number of joint policies |β|, the number of joint types |Θ| and
the worst case complexity of expanding a node κ.

5 6 7 8 9 10 20
10−2

100

102

cp
ut

im
e

(s
)

Individual Action Set Sizes

BruteForceSearch
BnB−CCI Numeric Ordering
BnB−CCI Max Contr. Diff
BnB−CCI Basis Types

(a) Varying number of actions.

4 5 6 7 8
10−2

100

102

cp
ut

im
e

(s
)

Individual Type Set Sizes

BruteForceSearch
BnB−CCI Numeric Ordering
BnB−CCI Max Contr. Diff
BnB−CCI Basis Types

(b) Varying number of types.

0.7 1 10 50
Speed Up

V
ar

yi
ng

 A
ct

io
n

or
 T

yp
e

S
et

 S
iz

es

Numeric Ordering
Max Contr. Diff
Basis Types

|Θi| = 7
|Θi| = 6
|Θi| = 5
|Θi| = 4

|Ai| = 20
|Ai| = 10
|Ai| = 9
|Ai| = 8
|Ai| = 7
|Ai| = 6
|Ai| = 5

(c) Speedup of CCI over CI.

Figure 3: Results for random BGs.

outperforms BFS, but by a smaller margin. Also it scales
relatively poorly with respect to the number of types. This
may seem surprising, since the worst-case time complexity
of expanding a node grows less quickly with the number of
types. However, analysis revealed that for |Ai| = 3 and
|Θi| = 8 many more nodes are expanded then for |Ai| = 8
and |Θi| = 3. This has two reasons. First, as illustrated
by Table 1b, the number of joint BG policies grows more
quickly with respect to the number of types. This however,
should hamper the performance of BFS equally. Second,
the number of joint types negatively affects the tightness
of the heuristic: For each of the unspecified joint types we
make an over-estimation, so one could expect the total over-
estimation to be proportional to the number of joint types.

We also compared the CCI heuristic vs. the vanilla CI
version. As the latter is less tight, BaGaBaB with CI can
prune fewer nodes, resulting in higher computation times (in
general) and higher memory requirements. To see whether
the additional overhead of re-computing the CCI heuristic
is worth the effort, we ran BaGaBaB with CI for all the
random BGs mentioned above. Figure 3c (note the log-scale
on the x-axis) shows the speedup of using CCI vs. CI, defined
as the quotient of both computation times. We see that in
general the speedup is higher than 1, indicating the slight
computational overhead of CCI results in faster search (less
nodes to be expanded). Furthermore, for large type spaces,
the speedup grows, and allows us to solve larger problems
within the defined memory limits.

6.2 BGs from DEC-POMDPs
We also tested the performance on Bayesian games re-

sulting from sequential decision problems, DEC-POMDPs
in particular. Note that although the forward and backward
perspective both generate BGs, the shape of these BGs is
substantially different. The forward approach generates BGs
with many types (because the number of histories grows ex-
ponentially with t), while the backward approach generates

BGs with many actions (because the number of sub-tree
policies can grow double exponentially with τ).

We collected a set of BGs encountered when running For-
ward Sweep Policy Search as implemented by GMAA∗ [6],
for several standard benchmark problems, whose descrip-
tions can be found in [6] as well. Figure 4 shows the re-
sults, demonstrating dramatic speedups of up to 12 orders
of magnitude for the larger BGs. In particular the Max Con-
tribution Difference performs very well. This confirms our
hypothesis that randomly generated BGs are hard to solve,
but that heuristic search methods can exploit the structure
inherent to non-random problems. Here joint type distribu-
tions have peaks instead of being flat, and the reward struc-
ture is often very skewed. If we quickly find a high-payoff
BG-policy and many others have a lower upper bound, we
can prune many candidates.

We also performed a preliminary investigation into BGs
resulting from Backward Perspective DEC-POMDP meth-
ods, PBIP in particular [3]. Figure 5 shows results for the
Cooperative Box Pushing problem, gathering BGs solved by
PBIP using parameter maxTrees = 3. We see that we can
obtain speedups of about an order of magnitude, which is
promising when considering that the number of joint actions
is still low (due to the low value for maxTrees).

7. CONCLUSIONS AND DISCUSSION
We considered solving Bayesian games (BGs) with identi-

cal payoffs, which important models for single-shot interac-
tions such as coalition formation as well as sequential mod-
els for cooperative teams of agents, such as DEC-POMDPs.
We showed how BGs can not only be used to model DEC-
POMDP solutions from the forward perspective, but also
from the backward perspective. This new viewpoint could
lead to new insight on overcoming the bottlenecks for cur-
rent DEC-POMDP dynamic programming algorithms.

Bayesian games occur in many diverse scenarios, but meth-

1121

4 / 25 16 / 25 64 / 25

10−2

100

102

104

106
cp

ut
im

e
(s

)

#JT / #JA

BruteForceSearch
BnB−CCI Numeric Ordering
BnB−CCI Max Contr. Diff
BnB−CCI Basis Types

(a) GridSmall problem.

16 / 9 64 / 9 256 / 9

10−2

100

102

104

106

108

1010

cp
ut

im
e

(s
)

#JT / #JA

BruteForceSearch
BnB−CCI Numeric Ordering
BnB−CCI Max Contr. Diff
BnB−CCI Basis Types

(b) FireFighting problem.

16 / 9 64 / 9 256 / 9

10−2

100

102

104

106

108

1010

cp
ut

im
e

(s
)

#JT / #JA

BruteForceSearch
BnB−CCI Numeric Ordering
BnB−CCI Max Contr. Diff
BnB−CCI Basis Types

(c) Recycling Robots problem.

Figure 4: Results for Forward Perspective BGs. A missing result is due to violation of the imposed memory limit.

25 / 9 25 / 16
10−1

100

101

102

cp
ut

im
e

(s
)

#JT / #JA

BruteForceSearch
BnB−CCI Numeric Ordering
BnB−CCI Max Contr. Diff
BnB−CCI Basis Types

Figure 5: Backward perspective: Box Pushing problem.

ods to solve them efficiently have received surprisingly lit-
tle attention. For this reason, we proposed BaGaBaB,
a branch and bound solution method for identical payoff
Bayesian games. This algorithm is able to make use of the
structure present in identical payoff BGs to solve them more
efficiently. We also provide several extensions to improve the
performance of the algorithm.

To test its performance, we empirically tested the pro-
posed algorithm on randomly generated BGs as well as on
BGs encountered while solving DEC-POMDPs. When com-
pared with random BGs, BaGaBaB shows a marked in-
crease in performance over brute force search. In some
cases, it ran up to 3 orders of magnitude faster. The ap-
proach scales especially well with respect to the number of
actions. For BGs encountered in real problems, more struc-
ture is often present. This is supported by an evaluation
on BGs encountered in the solution of DEC-POMDPs. For
these problems, we encountered speedups of over 10 orders
of magnitude. This shows the effectiveness of using a spe-
cialized approach to solving Bayesian games, especially in
more realistic scenarios.

In the future, we plan to improve the algorithm as well
as using it to build a full DEC-POMDP solver. Improve-
ments we expect to incorporate include heuristics such as
those that remove actions that are dominated in a given sit-
uation as well as exploring the anytime performance of the
search. For solving DEC-POMDPs, we believe improved
performance could be realized in both top-down (forward
perspective) and bottom-up (backwork perspective) solvers
by utilizing BaGaBaB at each step of the approach.

Acknowledgements
This research is part of the Interactive Collaborative Informa-

tion Systems (ICIS) project, supported by the Dutch Ministry of

Economic Affairs, grant nr: BSIK03024. This work was funded

by Fundação para a Ciência e a Tecnologia (ISR/IST plurian-

nual funding) through the PIDDAC Program funds and was sup-

ported by project PTDC/EEA-ACR/73266/2006. This work was

supported in part by the Air Force Office of Scientific Research

under Grant No. FA9550-08-1-0181 and by the National Science

Foundation under Grant No. IIS-0812149.

8. REFERENCES
[1] D. S. Bernstein, S. Zilberstein, and N. Immerman.

The complexity of decentralized control of Markov
decision processes. In UAI, 2000.

[2] G. Chalkiadakis and C. Boutilier. Sequential decision
making in repeated coalition formation under
uncertainty. In AAMAS, 2008.

[3] J. S. Dibangoye, A.-I. Mouaddib, and B. Chai-draa.
Point-based incremental pruning heuristic for solving
finite-horizon DEC-POMDPs. In AAMAS, 2009.

[4] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially
observable stochastic games with common payoffs. In
AAMAS, 2004.

[5] E. A. Hansen, D. S. Bernstein, and S. Zilberstein.
Dynamic programming for partially observable
stochastic games. In AAAI, 2004.

[6] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis.
Optimal and approximate Q-value functions for
decentralized POMDPs. Journal of Artificial
Intelligence Research, 32, 2008.

[7] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, 1994.

[8] S. Seuken and S. Zilberstein. Memory-bounded
dynamic programming for DEC-POMDPs. In IJCAI,
2007.

[9] S. Seuken and S. Zilberstein. Formal models and
algorithms for decentralized decision making under
uncertainty. Autonomous Agents and Multi-Agent
Systems, 17(2), 2008.

[10] D. Szer and F. Charpillet. Point-based dynamic
programming for DEC-POMDPs. In AAAI, 2006.

[11] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In UAI, 2005.

1122

